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Topic Introduction

Spectral Methods for Functional Brain Imaging

David Kleinfeld and Partha P. Mitra

Dynamic functional imaging experiments typically generate large, multivariate data sets that contain
considerable spatial and temporal complexity. The goal of this introduction is to present signal-
processing techniques that allow the underlying spatiotemporal structure to be readily distilled and
that also enable signal versus noise contributions to be separated.

INTRODUCTION

We present multivariate signal-processing techniques that help reveal the spatiotemporal structure of
optical imaging data and also allow signal versus noise contributions to be separated. These techniques
typically assume that the underlying activity may be modeled as stationary stochastic processes over
short analysis windows; that is, the statistics of the activity do not change during the analysis period.
This requires selection of an appropriate temporal window for the analysis, which can be checked in a
self-consistent manner.

The following worked examples are provided that serve to show the utility and implementation of
these spectral methods.

1. Deduction of rhythmic components of the dilation and constriction of a cortical penetrating
arteriole in rat to illustrate basic frequency-domain concepts.

2. Deduction of synaptic connectivity between neurons in the leech swim network to emphasize the
notions of spectral coherence and the associated confidence limits.

3. The denoising of imaging data in the study of calciumwaves in brain slice to introduce the concept
of singular value decomposition (SVD) in the time domain and to illustrate the notion of space–
time correlation in multisite measurements.

4. The delineation of wave phenomena in turtle visual cortex to illustrate spectrograms, along with
the concept of SVD in the frequency domain to determine the dominant patterns of spatial
coherence in a frequency localized manner.

Much of our exposition involves spectral analysis. Why work in the frequency domain? First,
many physiological phenomena have rhythmic components, ranging from electrical rhythms in the
brain to visceral functions like breathing and heartbeat. The time series of these phenomena may
appear very complicated, yet the representation in the frequency domain may be relatively simple and
readily connected with underlying physiological processes. Second, the calculation of confidence
intervals requires that the number of degrees of freedom are known. Determining this number is
complicated in the time domain, where all but white noise processes lead to correlation between
neighboring data points. In contrast, counting the number of degrees of freedom is readily established
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in the frequency domain, as neighboring frequency bins are uncorrelated under stationarity assump-
tions. Our emphasis is on the explanation and applications of signal processing methods and not on
scientific questions per se.

Some relevant signal processing texts include Papoulis (1962), Ahmed and Rao (1975), and
Percival and Walden (1993). The latter book includes sections on multitaper spectral analysis
methods, developed originally by Thomson (1982) and used extensively in our analysis. Applications
of modern signal-processing methods to problems from neuroscience can be found in the book by
Mitra and Bokil (2008) and in numerous reviews (Mitra and Pesaran 1998; Mitra et al. 1999; Pesaran
et al. 2005; Kleinfeld 2008). Our notation follows that in Mitra and Bokil (2008).

BACKGROUND

The process of data collection involves sampling a voltage or current so that the signals are represented
as an ordered set of points, called a time series, that are collected at a regular time interval. Let us
denote the sampled time series as V(t), the sampling time interval as Δt, and the length of sampling as
T. In spectral analysis, one reexpresses this time series in the frequency domain by decomposing V(t)
into a weighted sum of sinusoids. We must first understand the range of frequencies that may be
represented in the data.

The lowest resolvable frequency interval is given by the inverse of the length of the analysis window
and is denoted by the Rayleigh frequency, ΔfRayleigh = 1/T. In multitaper spectral analysis, the resolu-
tion bandwidth is typically denoted as 2Δf, where Δf is an adjustable parameter. The resolution
bandwidth 2Δf is also parameterized by the dimensionless product, p, of the half-bandwidth Δf and
the length of the window T, such that

Df T = p, (1)
with p≥ 1.

Sampling a continuous signal at discrete time intervals will in general lead to a loss of signal.
However, there is an important class of signals, the so-called band-limited signals whose spectral
transforms vanish outside of a frequency range whose highest frequency is denoted B. For this case, the
signal can be perfectly reconstructed from discrete samples at uniform intervals Δt, as long as
the sampling interval satisfies Δt < 1/(2B). An alternative way of representing this criterion is to
define the so-called Nyquist frequency, fNyquist = 1/(2Δt). Then the criterion for perfect reconstruction
of the original band-limited signal from sampled data becomes fNyquist > B.

Neural signals are not naturally band-limited, although physiological mechanisms such as the
membrane time constant of neurons provide natural cutoff frequencies. It is customary to low-pass
filter the original analog signal so that it becomes effectively band-limited and the Nyquist criterion
may be applied. Typically, fNyquist is chosen to be significantly greater than B, which is called “over-
sampling.” However, if Δt > 1/(2B), the sampling is not sufficiently rapid and signals at frequencies
greater than B are reflected back, or “aliased,” into the sampled interval that ranges from 0 to fNyquist.
For example, a signal at 1.4 × fNyquist is aliased to appear at 0.6 × fNyquist. The experimentally imposed
low-pass filters to prevent aliasing are often called “antialiasing filters.” Such filtering is not always
possible and aliasing cannot always be avoided.

The discrete Fourier transform of a data segment is defined by

Ṽ ( f ) = 1��
T

√
∑T
t=Dt

Dt e−2pftV (t). (2)

Qualitatively, the time seriesV(t) is projected against all possible sinusoids, indexed by frequency f,
to form a set of weights Ṽ ( f ). An immediate complication is that the finite extent of our data is
equivalent to multiplying an infinite data series with a square pulse of width T. The effect of such a
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window on the Fourier transform is to produce oscillations for each estimate of Ṽ ( f ) that extend into
neighboring frequency bands (Fig. 1A,B). This is known as leakage, and is minimized by multiplying
the time series with a function of time, denoted a taper, that smoothes the sharp edges of the pulse. A
half-sine taper offers improvement, but a special function devised specifically to minimize leakage and
known as a Slepian taper is optimal. The cost of reduced leakage is decreased spectral resolution

1/f0

–

–

–
T/2

T/2 T

T

f0–3/T f0–2/T f0–1/T f0+1/Tf0 f0+3/Tf0+2/T

Half-sine

Half-sine taper

k = 1

A

B

C

FIGURE 1. Basics of Fourier transforms and tapers. (A) Example of the process of tapering data. Top panel shows the
time series of a sine wave with center frequency f0 = T/10. Middle panel shows a half-sine taper, defined as sin{πt/T},
and a single Slepian taper with p = 1 and K = 1; the norm of both functions are set to 1. Bottom panel shows the
products of the tapers and the time series. (B) Magnitude of the Fourier transforms of the untapered data, the data
tapered with a single taper, and the data tapered with a single Slepian taper. Also shown is the “ideal” representation
with power only in the interval [–1/T, 1/T ] surrounding the center frequency. For the case of no taper, the transform is
Ṽ( f ) � sin{p( f − f0)/T}/[p( f − f0)/T], and the first zero is at f = ±1/T relative to f0, whereas for the case of the half-
sine taper, Ṽ( f ) � cos{p( f − f0)/T}/{[1− 2( f − f0)/T]2}, and the first zero is at f = ±3/(2T ) relative to f0. There is no
analytical expression for the transform of the Slepian taper. (C ) The family of four Slepian tapers,w(k)(t), for the choice
p = 2.5.
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through an increase in the resolution bandwidth (Fig. 1B). There are considerable advantages to
computing a family of independent estimates, Ṽ

(k)( f ), rather than a single estimate, and in weighting
the data with a set of orthonormal Slepian tapers to form this family (Fig. 1C).We denote each taper in
the set by w(k)(t) and compute the estimates

Ṽ
(k)( f ) = 1��

T
√

∑T
t=Dt

Dt e−2pftw(k)(t)V (t). (3)

The maximum number of tapers, denoted K, that supports this minimization, and which is used
throughout our presentation, is

K = 2p− 1. (4)
The lower spectral resolution, or equivalently a larger resolution bandwidth, is offset by a greater

number of spectral estimates Ṽ
(k)( f ). The increase in number of independent estimates minimizes the

distortion of the value in one frequency band by the value in a neighboring band and thus improves
the statistical reliability of quantities that depend on the Fourier transform of the original signal.

Numerical processing of sampled data requires that we work in dimensionless units.We normalize
time by the sample time, Δt, so that the number of data points in the time series is given by N; T/Δt.
We further normalize the resolution bandwidth by the sample time, Δt, and define the unitless half-
bandwidth W; ΔtΔf. Then the time–frequency product TΔf = p is transformed to

NW = p. (5)
Given sampled data,

Ṽ
(k)
(f ) = 1���

N
√

∑N
t=1

e−i2fptw(k)
t V t, (6)

where time is now an index that runs from 1 toN in steps of 1 rather than a discrete variable that runs
from 0 to T in steps of Δt, whereas frequency runs from −1/2 to +1/2 in steps of 1/N (Table 1).

Implementation of the algorithms can be in any programming environment, but the use of
the MatLab-based programming environment along with packaged routines in Chronux (http://
www.chronux.org) is particularly convenient.

CASE ONE: SPECTRAL POWER

As a means of introducing spectral estimation, we analyze the rhythms that give rise to motion of the
wall of a penetrating arteriole that sources blood to cortex (Fig. 2A). These arterioles are gateways that
transfer blood from the surface of cortex to the underlying microvasculature (Nishimura et al. 2007).

TABLE 1. Relation of laboratory and computational units

Quantity Units

Name Description Sampled data Computational

Record length Longest time T N
Sample time Shortest time Δt = T/N 1
Resolution half-bandwidth Lowest frequency Δf = p/T W = p/N
Nyquist frequency (fNyquist) Highest frequency 1/2Δt =N/2T 1/2
Temporal range [Δt, T ] [1, N ]
Spectral range [–N/2T, N/2T ] [–1/2, 1/2]
Time-bandwidth product (p) p≥ 1 T • Δf N •W
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FIGURE 2. Analysis of the intrinsic motion of the diameter of a penetrating arteriole from rat. (A) Two-photon line-
scan data through the center of a penetrating vessel over parietal cortex was obtained as described (Shih et al. 2009);
fNyquist = 500 Hz. (B) Time series of the diameter as a function of time, as derived from the line-scan data as described
(Devor et al. 2007) (T = 540 sec). The inset shows an expanded region to highlight the multiplicity of rhythmic events
present in the signal. (C ) Spectrum (Equations 8 and 9with p = 24) of the time derivative of the diameter,D′(t) (Equation
11) plotted on log–log (top) and linear–linear (bottom) axes. The gray bands encompass the 95% confidence bands
(Equations 13–16) and appear symmetric on a log scale (top) but asymmetric on the linear scale (bottom). The
frequencies are labeled fV for vasomotion, fB for breathing, and fH for heartbeat. The inset in the top figure shows
the spectrum of the diameterD(t); note the steep,�1/f2 trend that is removed by taking the spectrum ofD′(t) (AY Shih,
unpubl.).
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Past work has established that isolated arterioles can generate myographic activity in the 0.1-Hz range
(Osol and Halpern 1988), similar to that seen in vivo by noninvasive imaging techniques of brain
tissue (Mayhew et al. 1996) and two-photon imaging of capillaries (Kleinfeld et al. 1998). Here we
look at the relative contribution of vasomotion, as well as breathing and heart rate, to penetrating
vessels.

The raw signal is the diameter of the vessel, denoted D(t) (Fig. 2B). The mean value is removed
to give

dDt = Dt − 1

N

∑N
t=1

Dt . (7)

Our goal is to understand the spectral content of this signal—with confidence limits! The Fourier
transform of this signal, with respect to the kth taper, is (Equation 6)

dD̃
(k)( f ) = 1���

N
√

∑N
t=1

e−i2pftw(k)
t dDt, (8)

where, as noted previously (Equation 3), w(k)(t) is the kth Slepian taper, whose length is also T. We
compute the spectral power density, denoted S̃( f ), with units of distance2/frequency, in terms of an
average over the index of tapers, that is,

S̃( f ) ; 1

K

∑K
k=1

dD̃
(k)( f )

∣∣∣ ∣∣∣2, (9)

where dD̃
(k)( f )

∣∣∣ ∣∣∣2 = dD̃
(k)( f )[dD̃(k)( f )]∗; we further average over all trials if appropriate. Note that

the “1/
���
N

√
” normalization satisfies Parseval’s theorem, that is,

∑fNyquist
f=0

S̃( f ) = 1

N

∑N
t=1

D2
t . (10)

The spectrum in this example has strong features, yet has a trend to decrease as roughly 1/f 2 that
tends to obscure the peaks (inset in Fig. 2C). We remove the trend by computing the spectrum of the
temporal derivative of δDt,

dD′
t =

dDt+1 − dDt

Dt
, (11)

as ameans to flatten or “prewhiten” the spectrum.We now observe amultitude of peaks on a relatively
flat background (Fig. 2C). A broad peak is centered at 0.2 Hz and corresponds to vasomotion. A
sharper peak near 1 Hz corresponds to breathing; the nonsinusoidal shape of variations in diameter
caused by breathing leads to the presence of second and third harmonics. Finally, a sharp peak at 7 Hz
corresponds to heart rate and also includes a harmonic. No additional peaks are observed beyond the
second harmonic of breathing. Note that the resolution half-bandwidth was chosen to be Δf = 0.03 Hz
(p = 16), which is narrower than the low-frequency band.

The next issue is the calculation of confidence intervals so that the uncertainty in the power at
each peak may be established and the statistical significance of each peak may be assessed. Confidence
limits may be estimated analytically for various asymptotic limits. However, the confidence intervals
may also be estimated directly by a jackknife, where we compute the standard error in terms
of “delete-one” means (Thomson and Chave 1991). In this procedure, we exploit the multiple
estimates of the spectral power density and calculate K different mean spectra in which one term
is left out, that is,
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S̃
(n)( f ) ; 1

K − 1

∑K
k=1
k=n

dD̃
(k)( f )

∣∣∣ ∣∣∣2. (12)

Estimating the standard error of the spectral power density requires an extra step because spectral
amplitudes are defined on the interval [0, 1), whereas Gaussian variables exist on the full interval
(−1,1). Taking the logarithm leads to variables defined over the full interval; thus we transform the
delete-one estimates, S(n)( f ), according to

g S̃
(n)( f )

{ }
; ln S̃

(n)( f )
{ }

(13)

or

S̃
(n)( f ) = eg S̃

(n)( f )
{ }

. (14)
The mean of the transformed variable is

m̃( f ) ; 1

K

∑K
k=1

g S̃
(n)( f )

{ }
(15)

and the standard error is

s̃( f ) =

�����������������������������������
K − 1

K

∑K
n=1

g S̃
(n)( f )

{ }
− m( f )

[ ]2√√√√
. (16)

The 95% confidence limit for the transformed spectral density is given by 2s̃( f ), so that one
visualizes S̃( f ) by plotting the mean value of S̃( f ) (i.e., em̃( f )) along with the lower and upper bounds
(i.e., em̃( f )−2s̃( f ) and em̃( f )+2s̃( f ), respectively). The confidence bands are symmetric about the mean
when spectral power is plotted on a logarithmic scale (upper trace in Fig. 2C) rather than on a linear
scale (lower trace in Fig. 2C).

CASE TWO: COHERENCE BETWEEN TWO SIGNALS

To introduce coherence, a measure of the tracking of one rhythmic signal by another, we consider the
use of optical imaging to determine potential pair-wise connections between neurons (Cacciatore
et al. 1999). We focus on imaging data taken from the ventral surface of a leech ganglion and seek to
identify cells in the ganglion that receive monosynaptic input from neuron Tr2 in the head (Fig. 3A).
This cell functions as a toggle for the swim rhythm in these animals. Rather than serially impale each of
the roughly 400 cells in the ganglion and look for postsynaptic currents induced by driving Tr2, a
parallel strategy was adopted (Taylor et al. 2003). The cells in the ganglion were stained with a voltage-
sensitive dye (Fig. 3B), which transforms changes in membrane potential into changes in the intensity
of fluorescent light. The emitted light from all cells is detected with a charge-coupled device (Fig. 3B),
from which time series for the change in fluorescence are calculated for each neuron in the field
(Fig. 3C). Presynaptic cell Tr2 was stimulated with a periodic signal, at frequency fDrive, with the
assumption that candidate postsynaptic followers of Tr2 would fire with the same periodicity
(Fig. 3D). The phase of the coherence relative to the drive depends on the sign of the synapse,
propagation delays, and filtering by postsynaptic processes.

The coherence between the response of each cell and the drive, a complex function denoted C̃i( f ),
was calculated over the time period of the stimulus. We denote the measured time series of the optical
signals as Oi(t) and the reference drive signal as R(t). The spectral coherence is defined as
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C̃i( f ) =

1

K

∑K
k=1

Õ
(k)
i ( f ) R̃

(k)
i ( f )

[ ]∗
�����������������������������������������
1

K

∑K
k=1

Õ
(k)
i ( f )

∣∣∣ ∣∣∣2
( )

1

K

∑K
k=1

R̃
(k)
i ( f )

∣∣∣ ∣∣∣2
( )√√√√

. (17)

C

1 sec

CC

BA

E

D

C

FIGURE 3. Analysis of voltage-sensitive dye imaging experiments to find followers of Tr2. (A) Cartoon of the leech
nerve cord; input to Tr2 forms the drive signalU(t). (B) Fluorescence image of ganglion 10 stainedwith dye. (C ) Ellipses
drawn to encompass individual cells and define regions whose pixel outputs were averaged to form the optical signals
Vi(t). (D) Simultaneous electrical recording of Tr2 (i.e.,U(t)), and optical recordings from six of the cells shown in panel
C (T = 9 sec) (i.e., V1(t) through V6(t)), along with C̃i( fDrive)

∣∣∣ ∣∣∣ (Equation 17 with p = 6). (E) Polar plot of C̃i( fDrive) between
each optical recording and the cell Tr2 electrical recording for all 43 cells in panel C. The dashed line indicates the
α = 0.001 threshold for significance (Equations 24 and 25); error bars one standard error (Equations 18–25). (Modified
from Taylor et al. 2003.)
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To calculate the standard errors for the coherence estimates, we again use the jackknife (Thomson
and Chave 1991) and compute delete-one averages of coherence, denoted by C̃

(n)
i ( f ), where n is the

index of the deleted taper, that is,

C̃
(n)
i ( f ) =

1

K − 1

∑K
k=1
k=n

Õ
(k)
i ( f ) R̃

(k)
i ( f )

[ ]∗
����������������������������������������������������

1

K − 1

∑K
k=1
k=n

Õ
(k)
i ( f )

∣∣∣ ∣∣∣2
⎛
⎜⎝

⎞
⎟⎠ 1

K − 1

∑K
k=1
k=n

R̃
(k)
i ( f )

∣∣∣ ∣∣∣2
⎛
⎜⎝

⎞
⎟⎠

√√√√√√
. (18)

Estimating the standard error of the magnitude of C̃i( f ), as with the case for the spectral power,
requires an extra step because C̃i( f )

∣∣ ∣∣ is defined on the interval [0, 1], whereas Gaussian variables exist
on (−1, 1). The mean value of the magnitude of the coherence for each postsynaptic cell (i.e.,
C̃i( f )
∣∣ ∣∣) and the delete-one estimates, C̃

(n)
i ( f )

∣∣∣ ∣∣∣, are replaced with the transformed values

g C̃
(n)
i ( f )

∣∣∣ ∣∣∣{ }
= ln

C̃
(n)
i ( f )

∣∣∣ ∣∣∣2
1− C̃

(n)
i ( f )

∣∣∣ ∣∣∣2
⎛
⎜⎝

⎞
⎟⎠ (19)

or

C̃
(n)
i ( f )

∣∣∣ ∣∣∣ = 1������������������
1+ e−g C̃

(n)
i ( f )

∣∣ ∣∣{ }√ . (20)

The means of the transformed variables are

m̃i;Mag( f ) =
1

K

∑K
n=1

g C̃
(n)
i ( f )

{ }
(21)

and their standard errors are

s̃i;Mag( f ) =
������������������������������������������
K − 1

K

∑K

n=1
g C̃

(n)
i ( f )

{ }
− m̃i;Mag( f )

∣∣∣ ∣∣∣2
√

. (22)

The 95% confidence interval for C̃i( f )
∣∣ ∣∣ corresponds to values within the interval

���������������������
1+ e− m̃i;Mag−2s̃i;Mag

( )−1

√
,

���������������������
1+ e− m̃i;Mag+2s̃i;Mag

( )−1

√[ ]
.

For completeness, an alternate transformation for computing the variance is

g C̃i( f )
{ } = tanh−1 C̃i( f )

{ }
.

We now consider an estimate of the standard deviation of the phase of C̃i( f )
∣∣ ∣∣. Conceptually,

the idea is to compute the variation in the relative directions of the delete-one unit vectors (i.e.,
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C̃i( f )/ C̃i( f )
∣∣ ∣∣). The standard error is computed as

s̃i;Phase( f ) =

����������������������������������
2
K − 1

K
K −

∑K
n=1

C̃
(n)
i ( f )

C̃
(n)
i ( f )

∣∣∣ ∣∣∣
∣∣∣∣∣∣

∣∣∣∣∣∣
⎛
⎝

⎞
⎠

√√√√√ . (23)

Our interest is in the values of C̃i( f ) for f = fDrive and the confidence limits for this value. We
choose the resolution bandwidth so that the estimate of C̃i( fDrive)

∣∣ ∣∣ is kept separate from that of the
harmonic C̃i 2 fDrive

( )∣∣ ∣∣; the choice Δf = 0.4fDrive works well. We graph the magnitude and phase of
C̃i( fDrive) for all neurons, along with the confidence intervals, on a polar plot (Fig. 3E).

Finally, we consider whether the coherence of a given cell at fDrive is significantly >0 (i.e., larger
than one would expect by chance from a signal with no coherence) as a means to select candidate
postsynaptic targets of Tr2. We compared the estimate for each value of C̃i( fDrive) with the null
distribution for the magnitude of the coherence, which exceeds

C̃i( fDrive)
∣∣ ∣∣ = ��������������

1− a1/(K−1)
√

(24)

only in a fraction α of the trials (Hannan 1970; Jarvis and Mitra 2001). We used α = 0.001 in our
experiments to avoid false positives. We also calculated the multiple comparisons α level for each trial,
given by

amulti = 1− (1− a)N , (25)

whereN is the number of cells in the functional image, and verified that it did not exceed αmulti = 0.05
on any trial (Fig. 3E).

The result of the above procedure was the discovery of three postsynaptic targets of cell Tr2, two of
which were functionally unidentified neurons (Taylor et al. 2003).

CASE THREE: SPACE–TIME SINGULAR-VALUE DECOMPOSITION AND DENOISING

A common issue in the analysis of optical imaging data is the need to remove “fast” noise, that is,
fluctuations in intensity that occur on a pixel-by-pixel and frame-by-frame basis. The idea is that the
imaging data contains features that are highly correlated in space, such as underlying cell bodies,
processes, etc., and highly correlated in time, such as long-lasting responses. The imaging data may
thus be viewed as a space–time matrix of random numbers (i.e., the fast noise) with added correlated
structure. The goal is to separate the fast, uncorrelated noise from the raw data so that a compressed
image file with only the correlated signals remains (Fig. 4A,B shows single frames; for the complete
movies, see Movies 1 and 2 online at http://cshprotocols.cshlp.org). With this model in mind, we
focus on the case of intracellular Ca2+ oscillations in an organotypic culture of rat cortex, which
contains both neurons and glia. All cells were loaded with a fluorescence-based calcium indicator, and
spontaneous activity in the preparation was imaged with a fast-framing (Δt = 2 msec), low-resolution
(100 × 100 pixels) confocal microscope (Fig. 4A).

Imaging data is in the form of a three-dimensional array of intensities, denoted V(x, y, t). We
consider expressing the spatial location in terms of a pixel index, so that each (x, y)� s and the data is
now in the form of a space–time matrix (i.e., V(s, t)). This matrix may be decomposed into the outer
product of functions of pixel index with functions of time. Specifically,

V (s, t) =
∑rank{V}
n=1

ln Fn(s) Gn(t), (26)
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where the rank ofV(s, t) is the smaller of the pixel or time dimensions. For example, data of Figure 4A,
there areNt = 1200 frames or time points andNs = 10,000 pixels, so that rank{V(s, t)} =Nt. The above
decomposition is referred to as a singular-value decomposition (Golub and Kahan 1965). The tem-
poral functions satisfy an eigenvalue equation, that is,

∑Nt

t ′=1

Gn(t ′)
∑Ns

s=1

V (s, t)V (s, t ′) = l2n.Gn(t), (27)

where the functions Fn(s) and Gn(t) are orthonormal. The spatial function that accompanies each
temporal function is found by inverting the defining equation, so that

Fn(s) = 1

ln

∑Nt

t=1

V (s, t) Gn(t). (28)

E

CA

B

D

1

FIGURE 4. Denoising of spinning-disk confocal imaging data on Ca2+ waves in organotypic culture. (A) Selected
frames from a 1200-frame sequence of 100 × 100-pixel data. (B) The same data set after reconstruction with 25 of the
1200 modes (Equation 29). Denoising is particularly clear when the data are viewed as video clips. (C ) Singular value
decomposition of the imaging sequence in (A). The spectrum for the square of the eigenvalues for the space and time
modes. Note the excess variance in the roughly 25 dominant modes (Equations 27 and 28). (D) The top 15 spatial
modes, Fn(s), plus high-order modes. Light shades correspond to positive values and dark shades negative values. The
amplitude of the modes is set by the orthonormal condition

∑Nt
t=1 Fm(t)Fn(t) = dnm. (E) The top 15 temporal modes of

Gn(t). The amplitude of themodes is set by the orthonormal condition
∑Nt

t=1 Gm(t)Gn(t) = dnm ( JT Vogelstein, unpubl.).
Fields in A, B, and D are 115 µm on edge.
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For completeness, note that this is equivalent to determining the principal components of re-
sponses recorded from a single location across multiple trials, as opposed to multiple locations in a
single trial, where s labels the trial rather than the location.

When this decomposition is applied to the Ca2+ imaging data (Fig. 4A), we see that the eigenvalue
spectrum has large values for the low-order modes and then rapidly falls to a smoothly decreasing
function of index (Fig. 4B); theoretical expressions for the baseline distribution have been derived
(Sengupta and Mitra 1999). The spatial and temporal modes show defined structure for the first�20
modes; beyond this the spatial modes appear increasingly “grainy” and the temporal modes appear as
fast noise (Fig. 4D,E).

The utility of this decomposition is that only the lower-order modes carry information. Thus we
can reconstruct the data matrix from only these modes and remove the “fast” noise, that is,

Vreconstructed(s,t) =
∑largest significantmode

n=1

ln Fn(s) Gn(t). (29)

Compared with smoothing techniques, the truncated reconstruction respects all correlated fea-
tures in the data and thus, for example, does not remove sharp edges. Reconstruction of the intra-
cellular Ca2+ oscillation data highlights the correlated activity by removing fast, grainy variability
(Fig. 4B).

CASE FOUR: SPECTROGRAMS AND SPACE-FREQUENCY
SINGULAR-VALUE DECOMPOSITION

The final example concerns the characterization of coherent spatiotemporal dynamics, such as waves
of activity. We return to the use of voltage-sensitive dyes, this time to image the electrical dynamics of
turtle visual cortex in response to a looming stimulus. Early work had shown that a looming stimulus
led to the onset of �20-Hz oscillations, the g-band for turtle, in visual cortex (Prechtl and Bullock
1994, 1995). The limited range of cortical connections led to the hypothesis that this oscillation might
be part of wave motion. We investigated this issue by direct electrical measurements throughout the
depth of cortex at selected sites (Prechtl et al. 2000) and, of relevance for the present discussion, by
imaging the spatial patterns from cortex using voltage-sensitive dyes as the contrast agent (Prechtl
et al. 1997).

The electrical activity is expected to evolve between prestimulus versus poststimulus epochs and
possibly over an extended period of stimulation. Thus the spectral power is not stationary over long
periods of time and we must consider a running measure of the spectral power density, denoted the
spectrogram, that is a function of both frequency and time. We choose a restricted interval of time,
denoted Twindow, withNwindow data points, compute the Fourier transforms Ṽ

(k)( f ; t0), and spectrum
S̃( f ; t0) over that interval, where t0 indexes the time at the middle of the epoch, and then step forward
in time and recalculate the transforms and spectrum. Thus

Ṽ
(k)( f ; t0) = 1���

N
√

∑t0+(1/2)Nwindow−1

t=t0−(1/2)Nwindow

e−i2pft w(k)
t Vt (30)

and

S̃( f ; t0) ; 1

K

∑K
k=1

Ṽ
(k)( f ; t0)

∣∣∣ ∣∣∣2. (31)

The resolution half-bandwidth is now p/Nwindow and, as a practical matter, the index is shifted in
increments no larger thanNwindow/2. For the case of the summed optical signal from turtle cortex, we
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observe low-frequency activity before stimulation and multiple bands of high-frequency oscillations
on stimulation (Fig. 5A). A particularly pronounced band occurs near 18 Hz; this is clearly seen in a
line plot of the spectral power density for the 1-sec epoch centered in the middle of the stimulation
period (inset in Fig. 5B).

Time (sec)

Frequency, f (Hz)

A

B

C D

F G

E

FIGURE 5. Analysis of single-trial voltage-sensitive dye imaging data to delineate collective excitation in visual cortex
of turtle. (A) Spectrogram of the response averaged over all active pixels in the image (Equations 30 and 31). (B) Space–
time response during the period when the animal was presented with a looming stimulus. The data were denoised
(Equation 29), low-pass filtered at 60 Hz, and median filtered (400-msec width) to remove a stimulus-induced depo-
larization. We show every eighth frame (126 Hz); note the flow of depolarization from left to right. The inset is the
spectrum for the interval 4.7–5.7 sec and is the power spectrum over the T = 1 sec interval that encompasses this epoch
(black band in A). (C ) Coherence, C̃( f0), over intervals both before and after the onset (T = 3 sec; K = 7) estimated at
successive frequency bins; C̃( f0) . 0.14 indicates significance (Equations 33–35). (D–G) Spatial distribution of am-
plitude (red for maximum and blue for zero) and phase (π/12 radians per contour; arrow indicates dominant gradient)
of the coherence at f0 = 3, 8, 18, and 22 Hz, respectively, during stimulation. Fields in B and D–G are 3.5 mm in
diameter. (Modified from Prechtl et al. 1997.)
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The image data, even after denoising (Equation 29) and broad-band filtering, appears complex
(Fig. 5B), with regions of net depolarization sweeping across cortex, but no simple pattern emerges.
One possibility is that cortex supports multiple dynamic processes, each with a unique center fre-
quency, that may be decomposed by a singular value decomposition in the frequency domain. In this
method, proposed by Mann and Park (1994), the space–time data V(s, t) is first projected into a local
temporal frequency domain by transforming with respect to a set of tapers, that is,

Ṽ
(k)(s, f ) = 1���

N
√

∑N
t=1

e−i2pft w(k)
t Vt(s). (32)

The index k defines a local frequency index in the band [f0 − Δf/2, f0 + Δf/2]. For a fixed frequency,
f0, a SVD is performed on the complex matrix

Ṽ (s, k; f0) ; Ṽ
(1)(s, f0), . . . , Ṽ

(K)(s, f0) (33)
to yield

Ṽ (s, k; f0) =
∑rank{Ṽ}
n=1

ln F̃n(s) G̃n(k), (34)

where the rank is invariably set by K. A measure of coherence is given by the ratio of the power of the
leading mode to the total power (Fig. 5C), that is,

C̃( f0) = l21( f0)∑K
k=1

l2k( f0)
. (35)

A completely coherent response leads to C̃( f0) = 1, whereas for a uniform random process
C̃( f0) = 1/K. Where C̃( f0) has a peak, it is useful to examine the largest spatial mode, F̃1(s).
The magnitude of this complex image gives the spatial distribution of coherence that is centered at
frequency f0, whereas gradients in the phase of the image indicate the local direction of propagation.

For the example data (Fig. 5B), this analysis revealed linear waves as the dominant mode of
electrical activity. Those with a temporal frequency centered at f0 = 3 Hz are present with or
without stimulation (Prechtl et al. 1997) (Fig. 5D), whereas those centered at f0 = 8, 18, and 23 Hz
are seen only with stimulation and propagate orthogonal to the wave at 3 Hz (Fig. 5E–G). It is of
biological interest that the waves at f0 = 3 Hz track the direction of thalamocortical input, whereas
those at higher frequencies track a slight bias in axonal orientation (Cosans and Ulinski 1990) that was
unappreciated in the original work (Prechtl et al. 1997).

CONCLUSION

This introduction covers a number of key applications of spectral methods to optical imaging data.
The choice of topics is representative but by no means exhaustive. An additional application that is
likely to be of utility is the fitting of line spectra to signals with relatively pure periodic contributions,
such as may occur from physiological rhythms, from the response to a periodic stimulus, or from
environmental contaminants like line power (Mitra et al. 1999; Pesaran et al. 2005). A second
application of note is demodulation of a spatial image in response to periodic stimulation either at
the fundamental drive frequency (Borst 1995; Kalatsky and Stryker 2003; Sornborger et al. 2005) or
the second harmonic of the drive (Benucci et al. 2007). Demodulation also is valuable for delineating
wave dynamics in systems with rhythmic activity (Kleinfeld et al. 1994; Prechtl et al. 1997). In general,
spectral techniques are an essential tool for the statistical analysis of imaging data.
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